河南膜结构雨棚、郑州膜结构、山西膜结构、洛阳张拉膜、开封膜结构、开封(http://www.wendingmo.com)张拉膜、太原膜结构雨棚、漯河张拉膜、濮阳膜结构体育看台、新乡膜结构停车棚、膜结构雨棚、三门峡膜结构、商丘张拉膜、驻马店膜结构车棚-文鼎!郑州膜结构雨棚因其白重轻、施工周期短、透光性好、丰富的建筑表现力等优点而在体育建筑、公共建筑等方面得到了广泛应用膜材料是一种柔性的,具有强非线性和各向片性的材料,膜结构的设讣在很大程度上取决于膜材料的性能,了解膜材料的特性对于膜结构的设计至关重要建筑膜结构由柔性薄膜张拉而成,依赖于结构的几何曲面和膜内张力来提供必需的刚度,膜结构设计的首要步骤是找彤分析,其目的是找出满足建筑要求的空间形状及与之对应的张力分布裁剪分析是膜结构特有的一个分析步骤,其目的是将由找形得到的预应力状态的空间曲面进行剖分、转换成无应力的平面下料图,以便将平面膜材热合成整体,冉施加预应力以张成设计曲面合适的膜内张力是膜面能够张成并承受荷载的保证,方便快捷的对膜内张力进行现场测量是保证膜结构施工质量的前提。针对上述内容需注意一下几点:
1.概述景观膜结构的发展历史及其应用现状,对山西膜结构的设计内容及其国内外研究现状进行了详尽的沦述。
2.对一种PVDF涂层的聚酯纤维膜材进行实验研究制作了经向、纬线和45°斜向的条状单轴试件和十字形双轴实验试件,分别进行了单轴拉伸和双轴拉伸实验,其中双轴实验采用了自行设计的实验装置通过单轴实验确定了膜材不同方向的单轴拉伸强度,全程拉伸曲线双轴拉伸实验则得到了膜材的弹性模量和泊松比等参数,并深入了解膜材的变形性能,**理解了膜材的材料特性,为后续的结构分析奠定了基础。
3.从板壳力学的平衡方程出发,证明了膜内符点处处相等的膜内应力分布将得到最小曲面,而平衡应力分布则得到平衡曲面。
4.应用动力阻尼的动力松弛法进行了膜结构的找形分析动力松弛法解几何非线性问题的一个显著优点是不需要计算结构的整体刚度矩阵和求解整体刚度矩阵方程,然而它所需要的迭代次数较多本文在找形过程中根据结构位形的变化重新计算节点刚度、质量,不断调整计算参数,从而加快计算的收敛算例说明,用改进后的动力松弛法进行膜结构的找形分析,与在整个找形过程中采用同一计算参数相比较,大大减少了迭代次数由于忽略膜内剪切刚度,找形过程中单元变形较大,可通过结点坐标多步提升到位来解决问题。
5.通过对找形得到的散乱节点进行分片二元三次样条插值,得到整体C<,0>连续和C<&apos;1>连续的光滑曲面,适用于任意多边形区域两种插值方法均能给出膜曲面的满意表现插值曲面的误筹远小于C<&apos;0>插值曲面对两种插值方法,模拟曲面的误筹均随着初始网格尺度与平面总尺寸的比值减小而下降,在初始网格尺度与平面总尺寸的比值小于18之后,拟合曲面的精度变化随该比值的下降变化值逐渐不明显。
6.曲面上的测地线与平面上的直线有许多相似的性质,测地线的直线性质使其成为最适白的也是目前应用最为广泛的裁剪缝可以证明,连接平滑曲面上任意两点的弹性绌丝当拉紧时具有测地线的彤状本文在曲面上指定两点问引入弹性索,使其在曲面上自由滑移,并用动力松弛法寻找其平衡位置,即得测地线轨迹。
7.采用测地线划分曲面,应用最小极值法进行曲面的展开首先将曲面离散为空问二三角形网格,假设曲面已近似展开为平面,调整展丌平面中节点的位置,使平面网格中各三角彤的边长曲面网格国对应的边长之筹最小,从而求得空间曲面的平面近似展丌本文将上述展开过程归纳为一个无约束的极值问题,并用蒙特卡洛法求解非线性方程对于曲面上测地线的寻找和空间曲面展开分别给山了算例,用可展曲面圆柱面验证提山方法的正确性,并应用提山的方法给出了一个菱形马鞍膜面的裁剪样式。
8.通过实验证明超声仪测试膜材的超声波传播速度时具有方便、准确、可重复测试的特点,探讨了膜材不同方向张力比例对超声法测试的影响通过严格的实验室标定实验,建立了超声法测试膜材经纬向张力的标准曲线经过较大范同内的标准张力试什的验证,取得了较好的验证精度。 |