一、人工智能技术
从2006年开始研发智能技术,历经10年的积累,其智能技术已被用到产品线的方方面面,而作为智能技术发展的目标——“人工智能”,更是我们矢志不渝的追求。立足现在,放眼未来,我们把当前的人工智能研发重点聚焦在视频结构化技术和大数据技术两方面。
1.视频结构化技术
视频结构化技术是融合了机器视觉、图像处理、模式识别、深度学习等最前沿的人工智能技术,是视频内容理解的基石。
视频结构化在技术领域可以划分为三个步骤:目标检测、目标跟踪和目标属性提取。
目标检测过程是从视频中提取出前景目标,然后识别出前景目标是**目标(如:人员、车辆、人脸等)还是无效目标(如:树叶、阴影、光线等)。在目标检测过程主要应用到运动目标检测、人脸检测和车辆检测等技术。研究院在2016年PASCAL VOC目标检测中获得**,是10年研发积累的**体现。
目标跟踪过程是实现特定目标在场景中的持续跟踪,并从整个跟踪过程中获取一张高质量图片作为该目标的抓拍图片。在目标跟踪过程中主要应用到多目标跟踪、目标融合以及目标评分技术。研究院在2015年MOT Challenge算法测评中获“计算机视觉的多目标跟踪算法”**。机房动力环境监控www.42u.com.cn由mxt12整理发布
目标属性提取过程是对已经检测到的目标图片中目标属性的识别,判断该目标具有哪些可视化的特征属性,例如人员目标的性别、年龄、着装,车辆目标的车型、颜色等属性。目标属性提取过程主要基于深度学习网络结构的特征提取和分类技术。
同时,为了解决视频结构化的高性能分析计算问题,我们于2015年设计研制了嵌入式GPU集群服务器,充分利用多GPU的并行处理能力,提高视频结构化处理的综合效能。蓄电池检测系统http://xudianchi.create-china.com.cn由mxt12整理发布
资讯来源:机房动力环境监控
|