在智能制造中,通过信息物理系统(CPS)实现工厂/车间的设备传感和控制层的数据与企业信息系统融合,使得生产大数据传到云计算数据中心进行存储、分析,形成决策并反过来指导生产。
过去,设备运行过程中,其自然磨损本身会使产品的品质发生一定的变化。而由于信息技术、物联网技术的发展,现在可以通过传感技术,实时感知数据,知道产品出了什么故障,哪里需要配件,使得生产过程中的这些因素能够被精确控制,真正实现生产智能化。因此,在一定程度上,工厂/车间的传感器所产生的大数据直接决定了“工业4.0”所要求的智能化设备的智能水平。
此外,从生产能耗角度看,设备生产过程中利用传感器集中监控所有的生产流程,能够发现能耗的异常或峰值情况,由此能够在生产过程中不断实时优化能源消耗。同时,对所有流程的大数据进行分析,也将会整体上大幅降低生产能耗。
大数据是制造业智能制造的基础,其在制造业大规模定制中的应用包括数据采集、数据管理、订单管理、智能化制造、定制平台等,核心是定制平台。定制数据达到一定的数量级,就可以实现大数据应用。通过对大数据的挖掘,实现流行预测、精准匹配、时尚管理、社交应用、营销推送等更多的应用。同时,大数据能够帮助制造业企业提升营销的针对性,降低物流和库存的成本,减少生产资源投入的风险。
利用这些大数据进行分析,将带来仓储、配送、销售效率的大幅提升和成本的大幅下降,并将极大地减少库存,优化供应链。同时,利用销售数据、产品的传感器数据和供应商数据库的数据等大数据,制造业企业可以准确地预测全球不同市场区域的商品需求。由于可以跟踪库存和销售价格,所以制造业企业便可节约大量的成本。
实现消费者个性化需求,一方面需要制造业企业能够生产提供符合消费者个性偏好的产品或服务,一方面需要互联网提供消费者的个性化定制需求。由于消费者人数众多,每个人需求不同,导致需求的具体信息也不同,加上需求不断变化,就构成了产品需求的大数据。
消费者与制造业企业之间的交互和交易行为也将产生大量数据,挖掘和分析这些消费者动态数据,能够帮助消费者参与到产品的需求分析和产品设计等创新活动中,为产品创新作出贡献。制造业企业对这些数据进行处理,进而传递给智能设备,进行数据挖掘,设备调整,原材料准备等步骤,才能生产出符合个性化需求的定制产品。
更多智能制造的新闻资讯尽在http://www.imchina.net.cn/
资讯来源:http://www.imchina.net.cn/
|